Synthesis of Bioactive Microcapsules Using a Microfluidic Device

نویسندگان

  • Byeong-Il Kim
  • Soon Woo Jeong
  • Kyoung G. Lee
  • Taejung Park
  • Jung Youn Park
  • Jae Jun Song
  • Seok Jae Lee
  • Chang-Soo Lee
چکیده

Bioactive microcapsules containing Bacillus thuringiensis (BT) spores were generated by a combination of a hydro gel, microfluidic device and chemical polymerization method. As a proof-of-principle, we used BT spores displaying enhanced green fluorescent protein (EGFP) on the spore surface to spatially direct the EGFP-presenting spores within microcapsules. BT spore-encapsulated microdroplets of uniform size and shape are prepared through a flow-focusing method in a microfluidic device and converted into microcapsules through hydrogel polymerization. The size of microdroplets can be controlled by changing both the dispersion and continuous flow rate. Poly(N-isoproplyacrylamide) (PNIPAM), known as a hydrogel material, was employed as a biocompatible material for the encapsulation of BT spores and long-term storage and outstanding stability. Due to these unique properties of PNIPAM, the nutrients from Luria-Bertani complex medium diffused into the microcapsules and the microencapsulated spores germinated into vegetative cells under adequate environmental conditions. These results suggest that there is no limitation of transferring low-molecular-weight-substrates through the PNIPAM structures, and the viability of microencapsulated spores was confirmed by the culture of vegetative cells after the germinations. This microfluidic-based microencapsulation methodology provides a unique way of synthesizing bioactive microcapsules in a one-step process. This microfluidic-based strategy would be potentially suitable to produce microcapsules of various microbial spores for on-site biosensor analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microcompartmentalized Cell-free Protein Synthesis from Single Molecule Template Dna Using Semi-permeable Alginate Microcapsules

This paper presents a novel microcompartmentalized reaction system for cell-free protein synthesis using semi-permeable microcapsules. We used a microfluidic device to encapsulate template DNA and enzymes for cell-free protein synthesis into semi-permeable microcapsules composed of alginate and polyethylene imine (PEI). The template DNA was encapsulated into individual microcapsules at the conc...

متن کامل

Assembling magneto-plasmonic microcapsules using a microfluidic device.

Magneto-plasmonic microcapsules were prepared by the assembly of gold and γ-Fe(2)O(3) magnetic nanoparticles at the oil-water interface of microdroplets generated in a microfluidic device.

متن کامل

Polyurea microcapsules in microfluidics: surfactant control of soft membranes.

Interfacial polymerization techniques offer a versatile route for microcapsule synthesis. We designed a microfluidic process to synthesize monodisperse polyurea microcapsules (PUMCs); the microcapsules are formed by an interfacial polymerization of isocyanate dissolved in the oil and an amine dissolved in water. We measure the mechanical properties of the capsule as well as transport properties...

متن کامل

Improved and targeted delivery of bioactive molecules to cells with magnetic layer-by-layer assembled microcapsules.

Despite our increasing knowledge of cell biology and the recognition of an increasing repertoire of druggable intracellular therapeutic targets, there remain a limited number of approaches to deliver bioactive molecules to cells and even fewer that enable targeted delivery. Layer-by-layer (LbL) microcapsules are assembled using alternate layers of oppositely charged molecules and are potential ...

متن کامل

Monodisperse semi-permeable microcapsules for continuous observation of cells.

We present a method for forming monodisperse semi-permeable microcapsules composed of an alginate-poly-L-lysine (PLL) membrane for the observation of encapsulated cells. These microcapsules were prepared with a monolithic three-dimensional microfluidic axisymmetric flow-focusing device by an internal gelation method using glucono-1,5-lactone in order to provide mild conditions for the cells. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012